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DEVELOPMENTS IN A COMPUTER METHOD FOR
FLUID-STRUCTURE INTERACTIONS

By Richard Madden and John C. 0'Callahan
Northeastern University

SUMMARY

A computer method has been developed for the analysis of the inter-
action of a fluid and a structure. The technique is a coupling of a method of
characteristics solution of the inviscid, non-heat conducting, unsteady fluid
dynamic equations in cylindrical coordinates and the solution of a set of equations
for the structure. The method has been used to generate a computer program applicable
to the determination of the flow field inside a rigid parachute configuration and
the dynamic deflection of a circular linear membrane which has been placed into an
initially uniform free stream. Plots are presented for the flow field inside the
parachute and for the response of the membrane and the flow field at various times.

INTRODUCTION

The present work presents results from the early stages of a program
whose ultimate objective is the theoretical prediction of the fabric stresses in a
deploying parachute. A complete theoretical analyses of this phenomenon has not
as yet been attempted due to the complexity of the fluid-structure interaction.
Analyses have therefore been constrained to simplified models for either the
structure or the fluid dynamics. For example, a recent theoretical analysis,
ref. 1, has assumed a simple model for the flow field inside the canopy and con-
centrated on the material behavior. Peak stresses from this analysis compare favor-
ably with the Timited set of experimental results, however, the simplified aero-
dynamic model may not be applicable to some of the other problems of interest.
This deficiency has been recognized in ref. 1.




Another pertinent analysis has been presented in ref. 2. This paper
presents the results from a computer program for analyzing the aerodynamics inside
a rigid cup shaped body. The results compare well with experimental values for
pressure on the cup. The method, however, relies on a transformation of the region
between the shock and the cup which may be difficult to apply for the configurations
encountered during parachute inflation.

The present approach is designed to incorporate both a good representation
of the flow field and a model for the parachute. The program is not as yet suffic-
jently advanced to handle parachutes, however, it has been used to analyze the
interaction of an initially uniform free stream on a linear membrane and to give
values for the resulting flow field and membrane deflections.

The method utilizes a pair of computer programs which were developed
separately and then coupled implicitly. The aerodynamic computer program solves
the inviscid non-heat conducting unsteady fluid dynamic equations in cylindrical
coordinates by utilizing an approach based on the method of characteristics. The
approach is similar to that developed in ref. 3. The structure, here assumed to
be a membrane, is also solved using finite difference techniques. The present
method is sufficiently general so that any structural model may be substituted
for the membrane by merely changing one subroutine.

SYMBOLS

C isentropic sound speed

p nressure coefficient

E function of entropy

F arbitrary function

h time step

hr spacing between points on membhrane
N tension per unit length of membrane
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Px

pressure

radial coordinate

entropy

time

radial velocity

velocity normal to boundary
axial velocity

velocity tangential to boundary
membrane deflection

axial coordinate

angle between r and £ axes

]7 (po + 9i)

ratio of specific heats
pressure difference across membrane
tangential coordinate to boundary

angle between projection of inward normal to bicharacteristic on
r, z, plane and r axis.

=0 -
normal coordinate to boundary
fluid density

surface density of membrane

y -1
2y

= P

v-1




Subscripts:

f free stream

i i th bicharacteristic
m membrane

0 updated time plane

p particle path

GOVERNING EQUATIONS

The complete model of a fluid interacting with a membrane requires the
general governing equations describing the motion of the membrane and the fluid
together. Obtaining an exact solution to this set of equations with their assoc-
jated coupled, time dependent, boundary conditions would be a formitable, if not
impossible task. Therefore, it seems advisable to approach this problem numeri-
cally by developing separate computer programs and then coupling them through the
boundary conditions. This requires a model for the fluid and a model for the
membrane. The models utilized in the present approach are discussed in the follow-
ing sections.

Fluid Model

The unsteady inviscid axisymmetric equations are used to model the
fluid portion of the interaction. These equations may be written as follows:

Continuity:

g_§+p-§g+i§lz’-+%-=o (1a)
Radial momentum:

oDt + 22 =0 (1b)
Axial momentum:



Conservation of entropy along a particle path:

DP 2Dp _
Dt C t 0 (1d)

Equation of state:

P =P (p,s) (le)
where:

D _ .3 9 9

ot Tt T YtV o

and o is the density, P the pressure, s the entropy, r and U the radial coordinate
and velocity, respectively; z and V the axial coordinate and velocity, respectively;
t the time, and ¢ is the isentropic sound speed.

Equation (1d) is used to eliminate the p derivative in the continuity equation

producing:
DP 2 | au 3V Ul _
et e lar tar toy)t 0 (2)

The application of the method of characteristics to equations (1) and (2) yields

two sets of characteristic equations (see for example, ref. 3), particle paths

which are surfaces of possible discontinuity in the entropy derivative and the

usual bicharacteristic equations. Each set is composed of a slope and compatability
equation.

STope equations along particle paths:

dr . odz o _

E-u g FEo=y (3)
Bicharacteristics:

dr . dz :

rra U + ccos 8 ; il V + ¢ sin®@ (4)

where 8 is the angle measured between the projection of the inward normal to the
bicharacteristic onto the r, z plane and the r axis.

Compatibility equation along particle paths:

Equation (2) may be utilized as a compatibility relationship along a particle
path.




Compatibility equation along bicharacteristics:

dpP du . dy Z
g5t o cocos 0 &t e cosin 6 gf = -ec S (5)

where %E—represents the total derivative along a bicharacteristic:

d _ D d . 3
& T Dt + Cc cos 8 W + ¢ sin @ 57
and:
- osin? g UL U, 8y
S sin® 8 o sin B8 cos 9( = + oy )
2 aV U
+ cos™ 8 7 + -

An alternate form of equations (2) and (5) can be obtained using the perfect gas
relation:
P = E(s) pY

And defining:
_ 2 1 y-1
L V vE ¥ and o = p 2Y

where E is a function of entropy and y is the ratio of specific heats.
The second form of the compatibility equations then becomes:

do aU oV Ui _

“’EE+C§F+'§Z+F)‘O (6)
do elt) r v

vogp tcos@ gt osin@ o= -cS (7)

When a point is in the vicinity of a physical boundary, it is convenient to use
normal (&) and tangential (n) coordinates with respect to the physical boundary and
therefore, equations (6) and (7) may be written as:

do U, oW, U L

L cls T oy v =0 (8)
do = dU .= dV =

Vogqf tocos 8 gp t osin 6 g = -¢S (9)

where 8 = 8 - o is the characteristic angle measured from the membrane normal, o is
the angle between the r and the ¢ axis, and U and V are the normal and tangential

velocities to the membrane, respectively:



T =sin® © %%' - sin @ cos © (@Q_ + é!_)

25 oW , U
an Y

and: U = Ucos8 + Vsing

=<

= Y cos@ - Using

NOTE: the %-term is unchanged in the transformation of coordinates.

These equations, which are similar to those in ref. 4, are used to generate the
finite difference equations.

The boundary conditions on the fluid are that the radial velocity at the axis of
symmetry is zero and that the velocity of a fluid particle adjacent to a physical
boundary is zero relative to the boundary.

The initial condition for the fluid portion of the problem, will depend upon the
particular problem under consideration and therefore these will be presented in the
results section.

Membrane Model

The membrane is assumed to be a shallow axisymmetric shell which is restricted to

small deflections. The partial differential equation of motion is, then:
2 2

w[Z o o) 2 (10)
r ot

where N is the tension per unit length of membrane, W the normal deflection, p, the

material surface density, and AP the pressure difference across the membrane.

The boundary conditions on the membrane are that it is fixed at its outer edge and

that the slope is zero at the origin. The pressure difference across the membrane

is obtained from the fluid dynamic analysis.




FINITE DIFFERENCE EQUATIONS

Fluid Model

The finite difference equivalents of equations 3, 4, 6, 7, 8, and 9 are

given as follows:
Slope equations along
Particle Paths:

rp = r, - Up h
zp =z, - Vp h
Bicharacteristics:
rso o= org - (Ui + C, cos 91)
zg = rg - (Vi + C; sin Oi)

Compatibility equations along
Particle paths:

] sl 5V U
Bg 0y T 3 Ch ( ar T sz Yy
Or:
aU oV U
Bg 0y 5 Cgh ( e ooyt F"
Where
_ 1 ol 3V
Kg = 85 o5 - 7 cgh ( ar o3z
And:
P
5 2 o} 5
Bicharacteristics:
. 1
Bi % + sin Qi VO + Cos 91 U0 + 5
. aU oV 2
- sin Qi cos 91 37 + 5;-) + cos

=K5
= K
. 5
+v.)
r

5

C,h sin?
3V

91 3z ¢

(11a)
(11b)
(12a)
(12b)
(13)
(14)

ol

i ar
= K (15)

[, -«
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81 9, + sin Qi VO + cos 91 UO + > Con [s1n 91 5t

o — oU oV 2 oV U _
- sin 91 cos @1 (5;- + EE-) + cos 91 P + ?~] . = K,i (16)
Where

_ : 1

_ (a2 g2V _ g U, 24 3 , U
Si = [swn 6 T sin 8 cos © (az + oy ) + cos™ @ e + rJ1
B: = l(w +ys)
i 2 %o i

N
CO = 2 (Y ]) ‘1’0 00

In these equations, h is the time step; subscript o represents quantities in the
updated time plane at which the solution is desired; subscripts i and p, represent
values in the back time plane (tO - h) on the characteristic coniod and the part-
icle path, respectively.

Equations (11) to (16) are written in a form which is accurate to the
order of the time step squared. Equation (15) may appear at first to be of 0 (h3),
however, the angle 8 is not allowed to vary along the bicharacteristic; and thus,
the equation is of O (hz). Additionally, equations (15) and (16) use positions in
the back time plane which have been located accurate only to O (hz), see equations
(11) and (12). Therefore, equation (16) is also O (hz).
explicit solution in contrast to the O (h3) scheme which is implicit and therefore

requires iterations. The computing time for this scheme is consequently much
)

This scheme yields an

smaller than the pure 0 (h”) scheme. The present set of equations does, however,
involve information from both time planes, and therefore, may be expected to give
better results, in areas of high gradients, than the usual 0 (h2) scheme. It should
be noted, however, that the accuracies quoted are for an individual time step. The
final solution is reduced by one order after a number of time steps and therefore
it is accurate to the order of the time step itself.

In general, equations (13) to (16) contain the seven unknowns, Sy Uy»
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ELY
570 (55)
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o however, a proper selection of characteristic angles

05
will eliminate some of the unknown derivatives. Once the required number of char-
acteristics are selected, the equations may be solved for Po, Uo, Vo to yield

values on a spacial grid superimposed on the flow field at each increment in time.

SPACIAL DERIVATIVES

The spacial derivatives of the functions K » Si appearing in equations
(13) to (16) are obtained from a Taylor expansion; for example, consider the deriv-
ative in the r direction of some artitrary function F.

2
F(r+6r,z) = F(r,z) + 81 %;—(r, z) + Eﬁl QEE (r, 2)
22 3r2
oF 3 8%
F(r-s6r,z) = F(r, z) - 81, 5;-(r, z) + - ;;? (r, z)

where r, z is the point at which the derivative is desired and 8ry, &r, are the
forward and backward derivative spacings respectively.

Solving for 3% F gives:

2
)

af ()P F e dory, 2) - ()P F (v = srp, 2) - [(or)? - (sr))]F (v, 2) (1)

ar 8ry  8ry, (ar] + érz)

Similar expressions for other partial derivatives can be found accurate
to the order of the derivative spacing squared. Note, eguation (17) is applicable
to forward and backward differences, as well as central differences. The forward
and backward differences are required when the point at which the derivative is
desired is near a boundary.

MEMBRANE MODEL

The finite difference equivalent of equation (10) may be written as:

N 1 h |2 N (h 2
"o g e T E*[] "7 Y““k-])](ﬁj) M1, 5t A [‘ X }‘”k, j
2
N 1 h \2 h
—p-* [] = m] ('ﬁ';) Wk -1, - Wk’ j-1 + APk, i oy K#1 (]86)

10



g N (hy2 N (hy2
T I T s Wz,j”["l Zp(h)}whj

= Wy + AP] K=1 (18b)

sj"-i 3Jh_

Py

where k represents the kzbvnoda1 point and j represents the jzh-time plane, h is

the time step and hr is the spacial grid spacing.

The difference operators in equations (18) are written to the order of
the grid spacing squared and to the order of the time step squared. Note, however,
that similar to the fluid portion the order of error in the timewise direction is
reduced by one after a number of time steps.

The local velocities of the membrane are then determined from a backward
difference operator applied to the deflections.

My iag - My s W s .
Vk 41 = j=0
»J 2h
2 (W, 1 - W 4)
Vg = DU U (i”i) j=0
> h tlt=0

where Vk i is the instantaneous velocity of the K-En nodal point at the ij-time

step.
Initial conditions must be prescribed for both the deflection and velocity
on the membrane. The initial condition on velocity is used to define W, _, for
the initial time cycle as follows:
- W.
1,"‘ ] (]9)

t

A discussion of the topological aspects of the computer method together
with the procedures for solving the fluid model equations and the coupling of the
fluid and structure models is presented in the following sections.

11




TOPOLOGICAL ASPECTS

A feature of the present method is that the computer program is able to
sense a moving boundary, such as a parachute, and consequently, it is able to
divide the fluid flow field into a number of non-interacting regions. For example,
if an impervious parachute is under consideration, the flow on the inside and out-
side of the parachute does not interact except near the mouth and the vent. The
method consists of approximating the parachute by a number of connected straight
Tine segments whose positions are a function of time. The equation of one of
these segments is used to decide on which side of the parachute a particular point
lies. In this manner it is possible to insure that all points used in a spacial
partial derivative approximation are on the same side of the parachute and also to
insure that the entire numerical conoid of dependence of a point Ties on the same
side of the parachute. The technique is similar to that presented in ref. 3.

SOLUTION OF FLUID FINITE DIFFERENCE EQUATIONS

The finite difference equations are solved at each time plane to yield
values of the dependent variables on the physical discontinuity (parachute or
membrane) and also at points on a rectangular grid superimposed on the flow field.
The solution at various Tlocations in the field requires the consideration of two
classes of points: those that lie sufficiently far away from a discontinuity and
hence have a full conoid of dependence, and those points that Tie on or near a
discontinuity and therefore have a partial conoid of dependence. The numerical
representation of the equations and the procedures for handling these two classes
of points are discussed in the following sections.

Points Having a Full Conoid of Dependence

For points having a full conoid of dependence, four bicharacteristics
and the particle path are required to approximate the conoid. The values for 91
are chosen, equally spaced, to be 0, /2, 1, and 31/2, as shown on figure 1.

12



The values of 91 are chosen from stability considerations. The calculation requires

the choice of a point (ro, zo) at which the solution is desired in the new time

plane. The location (ri, Zi) in the previous time plane of the characteristics

which pass through (ro, z_) may then be determined from equations (11) and (12).

It is possible to find a goint (ri, Zi) for which u., vy, and c, satisfy equations
(11) and (12) since values of all dependent variables are specified on the grid and
on the discontinuities in the previous time plane. However, the solution of equa-
tions (11) and (12) is complicated by the fact that there is no explicit relation
.) to (U., V., c,;) in a given time plane. It is therefore necessary to

i i i i
choose some trial location for a bicharacteristic (ri, Zi) and use an iterative

tying (ri, z

Procedure (such as the Newton-Raphson method) to determine the actual coordinates
rs and z;. Once the coordinates r and z; are established, Tinear interpolation
is performed between the four surrounding grid points (or discontinuities) in the
r - z plane to determine the values for all the required dependent variables at
(ri, Zi)‘

Substituting these values into the four compatibility equations and the

particle path relation and reducing gives equations for Po, Uo, and Vo of the form.

2 -
Aco +BoO+C-O
C. -C, o
uy = 6140 (21)
0 C5
€, ~-Ci 0
73 1 7o
VO = —~—EE————-— (22)
where
) y-1
Oy = PO 2y

The equations for Po’ Uo’ Vo’ for all the types of points, considered, may
be written in this form, however, the definition of the coefficients A, B, C, and
C] - C6 will be a function of the type of point considered. The appropriate
coefficients are given in ref. 5.

13




Points Having a Partial Conoid of Dependence

Points 1ying on a discontinuity: Points lying on a discontinuity in

this analysis are of two types: points on the axis of symmetry, and points on the
membrane or parachute.

Field points on the axis of symmetry: The solution is accomplished by a
reflection technique; that is, the bicharacteristic angles 8 = 0 and T are symmetri-
cally placed with respect to the axis (see figure 1). Thus, the information ob-
tained for bicharacteristic 8 = 1 is also used for 8 = 0, in the pertinent equations.
The numerical equations for points on the axis must be modified to account for the
fact that on the axis the %-term becomes:

4. - 2

The equations for P_, U , and V_ are the same as equations (20), (21), and (22)

with new definitions fo? the coefficients.

Points on the membrane or parachute: In this case the orientation of the
membrane or parachute controls the portion of the conoid which lies in the appro-
priate region and the original set of 8 = 0, 1/2, 1, and 31/2 are not applicable.

A routine has been designed to allow the program to find the bicharacteristic angles
which correspond to the boundary. The appropriate bicharacteristics are then 8 =

@, 0 -1/2, - P, and /2 - P where P is an angle measured from the normal to the
discontinuity. (See figure 2) The angle § is assumed to be 2/3 of the way between
the normal and the bicharacteristic angle to the closest discontinuity. The
compatibility relations utilized are equations (14) and (16) with the following
modification.

Since the points are on a impervious membrane, the relative fluid velocity
normal to the membrane will be zero. The velocity components of the membrane are
known quantities and, therefore, the velocity of the fluid may be determined. The

additional relationships needed are:

U= U-U (24)

V= V.-V (25)

14



where all velocity components are measured in the £, n reference; U, V are the
velocity components of the fluid relative to the membrane; U%, V% the velocity
components of the fluid; and Um’ Vm the velocity components of the membrane.

The pressures and velocities are evaluated, in an inertial reference
frame which moves at the velocity of the physical boundary at the point under
consideration, by solving equations (20) and (22) with V substituted for V. Thus,
the total motion of the fluid is obtained by adding the velocity of the boundary
to the results of equations (20) and (22).

Points on the membrane or parachute and also on the axis of symmetry:

The procedure here is basically the same as the previous section with the use of a
reflection procedure (see figure 2). The reflection technique is used in a similar
manner to the field points on the axis except that two points are now reflected
with respect to the membrane normal. Additionally: the %-term must be modified

as follows:

('% ) ro= 0 %¥' (26)
Since there are no relative velocity components at this point only equation (20) is
required.

Points lying near a discontinuity: The procedure followed here is similar

to that for points lying on a discontinuity except that the velocity normal to the
discontinuity does not vanish and consequently one additional characteristic is
required. The appropriate angles measured from the local normal to the membrane
are 8 = n/2, -n/2, 1/4, -n/4, and 0 (see figure 3). If the point is on the

axis the reflection technique is again used.

COUPLING OF FLUID AND STRUCTURE MODELS

The coupling of the computer programs for the fluid field and the membrane
is done in an implicit manner. The steps in the coupling process for a given time
cycle are as follows:

15




1. The deflection and velocity at each nodal point on the membrane are determined
from the pressure differences across the membrane and local velocities on the
membrane at the previous two time steps.

2. The pressures and velocities of the fluid particles adjacent to the membrane
are calculated at the positions determined in the previous step.

3. Deflections and velocities on the membrane are again calculated using the
average of the pressure at the beginning of the time cycle and the pressure
calculated at the updated membrane positions.

4, Step 2 is repeated and a new value for the average pressure during the time
step is computed. This average pressure is compared with the average
pressure used in step 3. A change in pressure less than or equal to 1% of
the average pressure from step 3 is used as a criterion for convergence. If
convergence is not established, steps 3 and 4 are repeated until convergence is
attained or until a given amount of iterations has been exceeded. Exceeding
of this Timit will cause the program to stop.

5. The pressures and velocities are calculated at each point on the rectangular
grid which has been superimposed on the flow field.

The maximum number of iterations for steps 3 and 4 has teen set as 7, however, with

the time step presently used no more than 2 iterations have been required.

RESULTS AND DISCUSSION

A pair of cases are presented to illustrate the results of the present
method. The first illustrates the flow in and around a parachute during some
stage in its inflation and the second illustrates a fluid-structure interaction
problem. In both the cases considered, the fluid is assumed as an ideal gas
with vy = 1.4, free stream pressure of 14.7 1bs./in.2, free stream velocity of
10,000 in./s, the spacial grid in the fiow field was 3 in. by 3 in., and the time
step h was 7.5 x 10'55. The time step is approximately 60% of the stability limit
as predicted by the Courant Freidrichs & Lewy criterion for the free stream.

16



Parachute Configuration

For this case, the parachute is assumed rigid and in the form of an
O'Hara shape, as illustrated in figure 4. The O'Hara shapes provide a first
order approximation to the geometry of an inflating parachute, by assuming that
at each stage in the deployment the canopy may be represented by a combination of
2 simple geometrical shapes, a spherical section and a truncated conical section.
In the numerical analysis, the canopy is approximated by a number of straight
sided truncated conical segments.

The calculations were run on a 100 in. diameter parachute with an inlet
diameter of 40 in. The canopy was assumed to be non-porous and it was not vented
at the top. The parachute was represented by 10 points. The aerodynamic grid
is 39 in. by 57 in. in the radial and axial directions respectively.

Figure (4b) is a section taken through the axis of symmetry of figure (4a).
This figure shows the rigid parachute in the aerodynamic grid, the initial velocity
distribution and the separated zone. The velocity, as shown in figure (4b), is
assumed to be zero in the region above the lowest point on the parachute. The
region below this is given an initial axial velocity Vf of 10,000 in./s and zero
radial velocity.

Flow separation is assumed to occur in the region downstream of the
maximum radius of the parachute and the pressure in this region is taken to be
ambient. Since the pressure is prescribed in this region, calculations are not
performed outside the parachute downstream of its maximum radius.

A set of sample results is given in figures 5 to 8. These figures are
copies of CALCOMP plots of the data from the computer program. Each figure illus-
trates the pressure on the parachute and the velocity at each point in the aero-
dynamic grid. The velocity is represented by a vector emanating from the point
under consideration. The pressure on the parachute is plotted normal to the
parachute. Velocity and pressure references are given on each figure for
convenience.

17




The results for cycle 20 (t = 1.5 x 10“35) are given in figure 5. One
apparent difficulty that can be seen, however, is that the radial component of
velocity is larger than expected in areas such as that outside the parachute. This
results from a poor choice of boundary condition on the outermost radial grid, and
has been fixed in the more recent version of the program. At this time, the
velocity vectors and pressures indicate that the main pressure pulse has not quite
reached the top of the parachute, and the pressures in this area are ambient. The
small velocity vectors near the top of the parachute are due to numerical diffusion.

Figure 6 shows the flow field at the cycle 30 (t = 2.25 x 10'35) just
prior to reflection of the main pressure pulse from the top of the parachute, and
the pressures have increased to approximately 29 psi near the top.

Figure 7 shows the flow field at cycle 40 (t = 3.0 x 10'35) following the
reflection of the main pressure pulse. The region near the top of the parachute is
seen to be stagnated with velocities in this area due only to random numerical
error.

Figure 8 shows the field at a still later time, cycle 45 (t = 3.37 X 10'35)
The stagnation region has grown over that of Figure 7, however, a comparison of
figures 7 and 8 shows that the pressures on the parachute are essentially the same
and consequently equilibrium may be assumed to exist. These pressure distributions
compare in form to those reported in ref. 6.

Fluid-Membrane Interaction

The problem under consideration is the interaction of a uniform free
stream of air and a 54 in. diameter membrane of mass per unit area 105 1b. sz/in.B.
The membrane is subjected to a uniform tension of 2125 1b./in. As shown in ref. 5,
the numerical scheme will induce pressure transients in areas of severe gradients
of pressure or velocity in the flow field. In order to eliminate the transients
on the membrane, a starting solution has been used. This procedure allows part of
the flow field to develop before the membrane is moved. The starting solution used

assumes that the fluid particles on the membrane and one grid immediately in front

18



of the membrane are stagnated and have a pressure (39.75 ]b,/inaz) obtained from a
one-dimensional case where the fluid is stopped by the plate. The initial velocity
of the membrane itself is assumed to be zero. This flow field corresponds physi-
cally to the case where a plug was placed behind the membrane to keep it rigid and
then suddenly removed some time after the fluid struck the plate. See figure (g9 ).
The pressure on the upstream side of the membrane is maintained as ambient and
calculations are not performed in this area.

Figure (10) presents the pressure on the axis of symmetry on the membrane
as a function of time. In the initial few computational time cycles, a non-physical
pressure rise occurs due to numerical diffusion. The pressure drop during the next
few cycles is explained by the fact that as the membrane accelerates upwards, the
fluid particles next to the membrane gain in velocity, thus, reducing their pressure.
When the acceleration of the membrane becomes negative, the fluid particles are
STowed down and consequently, the pressure rises again to a peak. The peak occurs
just after the maximum deflection of the membrane. As the membrane moves in the
opposite direction the pressure falls for the next few cycles. Following this,
there is a dwell in pressure which will be discussed later with the aid of figures
(13), (14), and (15). It results from the fact that as the membrane pushes fluid
back into the flow field, it tends to swirl and form a low fluid velocity zone in
front of the membrane. The pressure then decreases monotonically, with one slight
bump, until a minimum is reached. This minimum occurs slightly later than the
minimum deflection point. A scale for pressure coefficient CP is also shown on the
plot. The pressure coefficient is seen to range from 3.2to 7,2during the first
deflection cycle of the membrane.

Figure (11) illustrates the deflection of the membrane point on the axis
as a function of time. This solution is compared with the solution which would
have been obtained if the stagnation pressure of 39.75 lb./in.2 had been used. Both
curves are similar in shape, however, the constant pressure case has a larger
maximum deflection and has a later time for the occurance of this maximum deflection.
This is explained by the fact that in the interaction problem, the pressure on the
membrane decreased as the membrane accelerates upward. The next minimum for the
deflection is also lower than the interaction solution resulting from the fact
that as the membrane returns, the pressure is above the stagnation pressure.

It is, however, interesting to note that the ratio of the time between
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maximum and minimum deflection to time for first maximum deflection is the same for
both solutions. No explanation is offered for this, in fact, it may be fortuitous.

Figure (12) shows the deflected shapes of the membrane at various times.
At t = .75 ms, the membrane is flat except near the outer edge since the signal
that the boundary has zero deflection has not as yet reached the entire membrane.
The curves for t = 1.5 and 1.8 ms show an almost first mode type shape as the
membrane approaches its maximum deflection. The curve for t = 1.8 ms is in fact
the maximum deflection. The curve for t = 4.2 ms is approximately at the minimum
for the first cycle and is seen to be also in the first mode shape. This is,
however, no guarantee that the membrane will continue to keep this shape for later
cycles. In fact, it appears that there is a tendency for the last few cycles for
the point on the axis to drop below its neighboring points thus indicating a con-
tribution of the higher modes of vibration.

Figures (13), (14), and (15) illustrate the velocities in the fluid
flow field and of fluid particles on the membrane at times t = 1.64, 2.1, and
3.0 ms. Figure (13) shows that at early times before maximum deflection, the flow
field is directed towards the axis of symmetry as the fluid flows in to fill the
additional area created by the deflecting membrane. Figure (14) illustrates the
velocity vectors shortly after the point on the membrane on the axis has reversed
direction and the membrane tries to push the fluid back into the free stream.
Note, however, that the outermost points on the membrane are still traveling
upwards and that the fluid in this area is traveling toward the axis. The fluid
particles pushed back into the field by the membrane encounter forward moving fluid
particles and consequently a swirl near the axis is created. The fluid in this
swirl has a low velocity causing the pressure dwell noted in figure (1G). Note also
that there is a relative stagnation point on the membrane at the point where the
inrushing fluid encounters the fluid being pushed out from the axis. The large
values of radial velocity near the rigid wall on figure (14) and the next figure
are caused by the fact that the edge of the computational grid is too close to
the edge of the membrane and may easily be fixed by enlarging the computational
grid. Figure (15) illustrates a later time when the stagnation point on the mem-
brane has moved out to the edge of the membrane and the entire membrane is now
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pushing fluid back into the main stream. The figures illustrate velocity vectors
only part way into the flow field since the velocities below this are approximately
free stream and consequently would be out of the scale for the present plots.

CONCLUDING REMARKS

A numerical method of analysis for determining the interaction of a
fluid and a structure has been developed and programmed. The method is part of
the early stage of development of a computer program for analyzing the stresses in
an inflating parachute. The method is based on an analysis of the flow field
using concepts from the numerical method of characteristics coupled implicitly with
an analysis of the dynamic response of a linear membrane. The approach is unique
in that provisions have been made to recognize boundaries, such as a parachute, in
the flow field and consequently physically non-interacting regions may be differ-
entiated.

The method has been used to generate flow fields in and about a rigid
shape which approximates a parachute during some stage in its deployment and also
to analyze the interaction of a membrane and a uniform free stream.
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